| ADV CHEM: FALL TRIMESTER: Units 1-5 | | | | |-------------------------------------|--|---|--| | Week | Topics | Labs/Activities | | | 1-6 | UNIT 1: ATOMIC STRUCTURE AND PROPERTIES UNIT 2: MOLECULAR AND IONIC COMPOUND STRUCTURE AND PROPERTIES UNIT 3: INTERMOLECULAR FORCES AND PROPERTIES UNIT 4: CHEMICAL REACTIONS • Summer Packet Review and Test • Students work in groups to make complete a series of labs where labs will be assessed through a lab contract. • Lab Safety: Activities to relate to SDS sheets, safe practices in lab and at home including a lab safety QA and the completion of safety contracts | Gravimetric Analysis: What Makes Hard Water Hard?* Titration: How Much Acid is in Fruit Juices and Soft Drinks?* Beer's Law: Co²⁺ concentration in soil Separation by Paper Chromatography Standardization of a NaOH solution Molar Mass of a Butane Lab | | | 7-10 | UNIT 5: KINETICS Topic 5.1: Reaction rates Topic 5.2: Introduction to Rate Law Topic 5.3: Concentration Changes Over Time Topic 5.4: Elementary Reactions Topic 5.5: Collision Model Topic 5.6 & 5.10: Reaction Energy Profiles Topic 5.7: Introduction to Reaction mechanisms Topic 5.11: Catalysis | Reactions & Rates PhET Activity (Students work through a series of activities focusing on enhancing their understanding of reactions and rates across multiple representations. Prep: Determine the Rate Law for Bleach & Food Dye Rxn* (Students are asked to determine the rate law of the reaction between bleach and a food color of their choice. They are given no further instruction.) Catalytic Decomposition of Hydrogen Peroxide (Students add several different components to H2O2 and measure rate of decomposition. For those that act as catalysts, student must assign the class of catalysis.) | | | 11 | Review and Unit 5 EXAM | | | | 12 | THANKSGIVING BREAK | | | | ADV CHEM: WINTER TRIMESTER: Units 6 and 9 (Partial) | | | | |---|--|---|--| | Week | Topics | Labs/Activities | | | 1-3 | UNIT 6: THERMODYNAMICS Topic 6.1: Endothermic and Exothermic Reactions Topic 6.2: Energy Diagrams Topic 6.3: Heat Transfer and Thermal Equilibrium Topic 6.4: Heat Capacity and Calorimetry Topic 6.6: Introduction to Enthalpy of Reaction Topic 6.7: Bond Enthalpies | Maxwell-Boltzmann Distribution: Conceptual
Analysis (Students run the ActivPhysics Online
simulation & answer questions.) Calorimetry: The Hand Warmer Design Challenge:
Where Does the Heat Come From?* | | | | WINTER BREAK | | | | 4-6 | UNIT 6: THERMODYNAMICS (cont.) Topic 6.8: Enthaply of Formation Topic 6.9: Hess' Law | Using Hess's Law in an Acid-Base Reaction Enthalpy of Combustion for MgO* (Students must design a lab given a materials list and the knowledge that ΔH must be measured indirectly.) | | | 7-9 | UNIT 9: APPLICATIONS OF THERMODYNAMICS Topic 9.1: Introduction to Entropy Topic 9.2: Absolute Entropy and Entropy Change Topic 9.3: Gibbs Free Energy and Thermodynamic Favorability Topic 9.4: Thermodynamic and Kinetic Control | Entropy (Students engage in the Chemtours Activity) Spontaneity Lab* (Students observe multiple reactions or processes to explain the possible spontaneity both qualitatively and quantitatively. | | | 10-11 | UNIT 7: EQUILIBRIUM Topic 7.1: Introduction to Equilibrium Topic 7.2: Direction of Reversible Reactions Topic 7.3: Reaction Quotient and Equilibrium Constant Topic 7.4: Calculating the Equilibrium Constant Topic 7.5: Magnitude of the Equilibrium Constant Topic 7.6: Properties of the Equilibrium Constant Topic 7.7: Calculating Equilibrium Concentrations Topic 7.9: Introduction to La Chatelier's Principle Topic 7.10: Reaction Quotient and La Chatelier's Principle | • Equilibrium: Can We Make the Colors of the Rainbow? An Application of Le Chatelier's Principle. * | | | 12 | Review and Unit 6/9 EXAM | | | | ADV CHEM: SPRING TRIMESTER: Units 7 (cont.), 8 and 9 (partial) | | | | |--|--|--|--| | Week | Topics | Labs/Activities | | | 1 | UNIT 9: APPLICATIONS OF THERMODYNAMICS Topic 9.5: Free Energy and Equilibrium | Spontaneity Lab Revisited* (Students take a look back at the spontaneity lab using ΔG° and RT to estimate K where appropriate. They will then expand their conclusions to incorporate a qualitative analysis of equilibria.) | | | 2-4 | UNIT 8: ACIDS AND BASES Topic 8.1: Introduction to Acids and Bases Topic 8.2: pH and pOH of Strong Acids and Bases Topic 8.3: Weak Acid and Base Equilibria Topic 8.7: pH and pKa Topic 8.6: Molecular Structure of Acids and Bases | Chem Activity 43: Acid Strength Chem Activity 46: Relative Acid Strength Chem Activity 47" Acid/Base Strength of
Conjugate Pairs | | | 5 | EBC | | | | | SPRING BREAK | | | | 6-9 | Topic 8.4: Acid-Base Reactions and Buffers Topic 8.5: Acid-Base Titrations Topic 8.8: Properties of Buffers Topic 8.9: Henderson-Hasselbach Equation Topic 8.10: Buffer Capacity | Acid-Base Titration: How do the Structure and the Initial Concentration of an Acid and a Base Influence the pH of the Resultant Solution During a Titration?* Buffer Design: The Preparation and Testing of an Effective Buffer: How Do Components Influence a Buffer's pH and Capacity?* | | | 10 | Topic 7.11: Introduction to Solubility Equilibria Topic 7.12: Common-Ion Effect Topic 7.13: pH and Solubility Topic 7.14: Free Energy of Dissolution | Chem Activity 41: The Solubility Product Connecting Solubility, Equilibrium and Periodicity in a Green, Inquiry Experiment* (Students titrate three hydroxide solutions to determine the relationship between periodicity and solubility of the cations.) | | | 11 | FINAL EXAM WEEK | | | | 12 | GRADUATION | | | | <mark>9</mark> | AP Exam on May 18th, 2021 Recommended over the first date of 5/2 (Week 7) | | |