KEY-HW: Mole Relationships

Friday, October 23, 2020 11:53 AM

Complete the following ICE charts to answer the questions below. LR = \limits \text{imithy reason}.

1) How much magnesium nitride will we produce if we start with 14 moles of magnesium and 25 moles of nitrogen? 4.67 roles

	3 Mg (s) + 1 N ₂ (g) \rightarrow 1 Mg ₃ N ₂ (s)				
Initial	14	25	Ø		
Change	- 14	- 4.67	+ 4.67		
End	Ø (IR)	20 33	4.67		

2) How much silver can we produce if we start with 65 moles of Cu and 50 moles of silver nitrate? 50 woles

	Cu (s) -	+ <u>2</u> AgNO ₃ (aq) -	→ <u>2</u> Ag(s) +	Cu(NO ₃) ₂ (aq)
Initial	65	50	Ø	Ø
Change	- 25	- 50	+50	+25
End	40	Ø	50	25

3) How much aluminum will we need to make 100 moles of H₂ gas assuming we have excess HCl? 66.7 moles

	Al (s) -	+ <u>6</u> HCl (aq) -	→ <u>2</u> AlCl₃ (aq) +	+ <u>3</u> H ₂ (g)
Initial	66.7	X.5.	Ø	Ø
Change	-66.7	- 200	+66.7	+/00
E nd	Ø	X.5.	66.7	100

4) How much sodium nitrate decomposed if we produced 4.0 moles of oxygen? 8

			<u> </u>
	NaNO ₃ (s) =	→ <u></u>	O ₂ (g)
Initial	8	0	0
Change	- 8	78	+4
End	K	8	4

5) How much NaNO₂ can we produce from 7.5 moles of sodium nitrate? 7.5 moles

$$2$$
NaNO₃ (s) $\rightarrow 2$ NaNO₂ (s) + 1 O₂ (g)

	2 NaNO ₃ (s) \rightarrow 2 NaNO ₂ (s) + 1 O ₂ (g)				
Initial	7.5	Ø	Ø		
Change	-7.5	t 7.5	+ 3.75		
End	Ø	7.5	3.75		

6) How much ammonia, NH₃, can be produced if we start with 50 moles of each reactant? 33.3 moles

				Sold Circ	
	$_{N_2(g)} + _{3}H_2(g) \rightarrow _{2}NH_3(g)$				
Initial	50	50	Ø		
Change	- 16.7	~ 50	+ 33.3		
End	33.3	Ø (LR)	33.3		

7) How much hydrogen gas do we need to make 100 moles of ammonia, NH₃, assuming excess nitrogen? /50 how

	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$				
Initial	X. S.	150	Ø		
Change	-50	-150	+ 100		
End	X.5.	Ø	100		

8) How much hydrogen gas can we produce from 37 mole of K and excess water?

				1013 11043
	<u>2</u> K(s)	+ <u>2</u> H ₂ O (l) -	→ <u>2</u> KOH (aq) +	H ₂ (g)
Initial	37	X.s.	Ø	Ø
Change	- 37	-37	+ 37	+18.5
End	Ø	X.S.	37	18.5

9) How much KOH can we make from 17 moles of potassium and 25 moles of water?

				1 1:003
	_2_K (s) +	+ <u>2</u> H ₂ O (l) -	→ <u>2</u> KOH (aq) +	H ₂ (g)
Initial	17	25	Ø	Ø
Change	-17	-17	+17	+ 8.5
End	ØR	8	17	8.5

10) How much carbon dioxide will be produced when 1.5 moles of sodium carbonate reacts with 2 moles of HCI?

$$\perp$$
 Na₂CO₃ (s) + 2 HCl (aq) \rightarrow 2 NaCl (aq) + \perp CO₂ (g) + \perp H₂O (l)

10) How much carbon dioxide will be produced when 1.5 moles of sodium carbonate reacts with 2 moles of HCI? | Male (U)

	$\ \ \ \ \ \ \ \ \ \ \ \ \ $				
Initial	1.5	2	Ø	Ø	Ø
Change	-1	-2	+2	+	+1
End	0.5	Ø	2	1	1

11) How much sodium carbonate was consumed when 0.125 moles of NaCl was produced assuming excess HCl. 6.0625 moles

	\perp Na ₂ CO ₃ (s) + $\frac{2}{2}$ HCl (aq) \Rightarrow $\frac{2}{2}$ NaCl (aq) + \perp CO ₂ (g) + \perp H ₂ O (l)				
Initial	0.0625	X.5.	ø	Ø	ø
Change	-0.0625	-0.125	+0.125	0.0625	0.0625
End	Ø	X.5.	0.125		

12) How much carbon dioxide is released into the atmosphere when 46 moles of propane, C₃H₈, is burned in excess oxygen? 46 moles of propane is the average amount of propane burned per hour per household. 138 moles

	C ₃ H ₈ (g)	+ <u>5</u> 0 ₂ (g) -	→ <u>3</u> CO ₂ (g) +	+ <u>4</u> H ₂ O (g
Initial	46	X.S.	Ø	Ø
Change	-46	- 230	+138	+ 184
End	Ø	X.5.	138	184

13) How much iron(III) oxide produced when reacting 0.45 moles of FeO with 0.50 moles of O₂?

	$\underline{\mathcal{H}}$ FeO (s) + $\underline{1}$ O ₂ (g) \Rightarrow $\underline{2}$ Fe ₂ O ₃ (s)		
Initial	0.45	0.50	Ø
Change	-0.45	-0.1125	+ 0.225
End	Ø (A)	0.3875	0.225

- 14) Set up an ICE chart for the combustion of magnesium: Mg + O_2 --> MgO Then answer the questions below:
 - A) How much MgO will be produced when you react 13 moles of Mg with excess oxygen?
 - B) How much MgO will be produced when you react 12 moles of Mg with 8 moles of oxygen?
 - C) How much Mg did you burn if you produced 25 moles of MgO in excess oxygen?

A)
$$2Mg + O_2 \rightarrow 2MgO$$

$$1 \quad 13 \qquad X.5 \qquad \varnothing$$

$$C - 13 \qquad -6.5 \qquad +13$$

$$E \qquad \varnothing \qquad X.5. \qquad \boxed{13} \leftarrow \text{answers are boxed}$$

$$C - 13 - 6.5$$
 +13
 $E \otimes X.5.$ 13 \(\tau \text{answers are boxed} \)

B)
$$2mg + O_2 \rightarrow 2mgO$$

 $1 \quad 12 \quad 8 \quad \varnothing$
 $C \quad -12 \quad -6 \quad +12$
 $E \quad \varnothing \quad 2 \quad \boxed{12}$

c)
$$2Mg + O_2 \rightarrow 2MgO$$

 1 25 $X.5$ \emptyset
 $C - 25$ -12.5 $+25$
 E \emptyset $X.5$